Ferret Brain Study Exproes How Rliable Visual Representations emerges During Development

Health & Medicine


Study Expores the Processes Underlying the Emergence of Reliable Cortical Representations During Development

In Visually Naïve Animals, Monocular Evoked Activity is Highly Variable and High-Dimensional, similar to binocular Evoked Activity. (Related to Fig. 3). CREDIT: Nature Neuroscience (2025). DOI: 10.1038/S41593-024-01857-3

Brain Circuits Are Known To Gradually Form and Development After Birth As The Result of Both Innate Biological Processes and Life Experiences. PAST STUDIES SUGGEST THAT THE INITIAL DEVELOPMENT OF BRAIN CIRCUITS SPANS ACROSS TWO DIFFERENT STAGES.

The First of These Stages Takes Place Before Animals and Humans Start Experience Life. During this Stage, The Initial Organization of Cortical Networks is Stablished Via Internal (IE, Endogous) Mechanisms.

Following the formation of this initial Organization, The Second Stage Begins. This Second Phase Equate the Refinement of Cortical Networks Over Time in Response To An Animal or Human’s Individual Life Experiences.

Researchers at the Frankfurt Institute for Advanced Studies (Fias), Goethe University Frankfurt and the Max Planck Florida Institute for Neuroscience Recently Explored the Processes Supporting The Early Development of Neural Circuits in the Mammal Brain’s Visual Cortex. Their paperpublished in Nature NeuroscienceUnveils Patterns of Cortical Activity Occurring in the Ferret Visual Cortex Before and After Newly Born Pups First Open Their Eyes.

“The Fundamental Structure of Cortical Networks Arises Early in Development Before The Onset of Sensory Experience,” Sigrid Trägenap, David E. Whitney and Their Colleagues Wrote in Their Paper. “However, How endogously Generated Networks Response to the Onset of Sensory Experience and How they form sensory representations with Experience Remain Unclear. We Examined this ‘Nature-Nurture Transform’ At the Single-Indian Level Using Chronic Imaging in Ferret Visual cortex.”

To Better Understand What Happens in the Visual Cortex of Ferrets Before and After Birth, The Researchers Used A Technique Called in Vivo Calcium Imaging. This imaging approach religions on the use of special dyes or genetically encoded proteins that light up when calcium levels increase, Which in neurons Occursos when the after becomed active.

Study Expores the Processes Underlying the Emergence of Reliable Cortical Representations During Development

In Visually Naive Animals, Grating Stimulus-Evoked Activity is Robust and Modular But Also Highly Variable Both Within and Across Trials. CREDIT: TRAGENAP et al. (Nature Neuroscience2025).

Trägenap, Whitney and Their Colleagues Used Calcium Imaging to Record the Activity of Neurons in the Ferret’s Visual Cortex Before FERRET OPEND THEIR EYES, WHEN THEY FIRST OPENED THEIR EYES, and Week After They Were Born. INTERNTINGLY, THERE OBSERED DIFFERENT PATTERNS OF ACTIVITY AT THESE DIFFERENT STAGES OF EARLY DEVELOPMENT.

“At Eye Opening, Visual Stimulation Evokes Robostn Patterns of Cortical Network Activity That Are Highly Variable Within and Across trials, Severely Limiting Stimulus Discriminability,” Wrote Trägenap, Whityy and Their Colleagues.

“These Initial Stimulus-Evoked Modular Patterns are distinct from spontaneous network activity patterns present before and at the time of eye opening. Within a Week of Normal Visual Experience, Cortical Networks Development Low-Dimensional, Highly Reliable Stimulus Representations That corresponding with reorganized patterns of spontaneous activity. “

Overall, The Results of This Recent Study Suggest That Activity in the Visual Cortex of Ferrets, and Potentially Phher Mammals, Varies Significantly Before, During and After Birth. Their Observations Indicate that what a ferret first opens its Eyes, its brain struggles to cream consistent representations of what the animal first sees.

After Just a Week of Life, However, The Same Ferret’s Brain Activity Shifts. They Observed Stable Neural Patterns Linked to Representations of Visual Stimuli. As parts of their Study, The Researchers also Developed A Computational Model That Used to Artificially Replicate The Early Development Processes They Observed.

“Using A Computational Model, We Propose That Reliable Visual Representations Derive from the Alignment of Feedforward and Recurent Cortical Networks Shaped by Novel Patterns of Visually Driven Activity,” Wrote the Researchrs.

Based on Their Findings, Trägenap, Whitney and Their Colleagues Suggest That Visual Representations emerges the Result of Two Types of Cortical Networks, One Carrying Incoming Sensory Signals (IE, Feedforward) and One Reigning Visual Representats Via Internal Processes (IE, Recurrent). Their Paper Could Soon informa Further Neuroscience Studies Focusing on Early Brain Development, While Potentially Informing the Creation of Artificial Intelligence (AI) Models That Emulate The Dynamics They Observed.

More information:
Sigrid Trägenap et al, the Developmental Emergence of Relable Cortical Representations, Nature Neuroscience (2025). DOI: 10.1038/S41593-024-01857-3.

© 2025 Science x Network

Citation: FERRET BRAIN STUDY EXHIBITING How Rliable Visual Representations emerges During Development (2025, February 23) Retrieved 23 February 2025 From

This document is Subject to Copyright. Apart from Any Fair Dealing for the Purpose of Private Study or Research at Part May Be Reproduced Without The Written Permission. The Content is Provided for Information Purposes Only.





Source link

Leave a Reply

Your email address will not be published. Required fields are marked *